vCJD transfusion-associated Fourth Case UK

My Photo
Name:
Location: BACLIFF, Texas, United States

My mother was murdered by what I call corporate and political homicide i.e. FOR PROFIT! she died from a rare phenotype of CJD i.e. the Heidenhain Variant of Creutzfeldt Jakob Disease i.e. sporadic, simply meaning from unknown route and source. I have simply been trying to validate her death DOD 12/14/97 with the truth. There is a route, and there is a source. There are many here in the USA. WE must make CJD and all human TSE, of all age groups 'reportable' Nationally and Internationally, with a written CJD questionnaire asking real questions pertaining to route and source of this agent. Friendly fire has the potential to play a huge role in the continued transmission of this agent via the medical, dental, and surgical arena. We must not flounder any longer. ...TSS

Saturday, April 30, 2011

Blood product, collected from a donor who was at risk for variant Creutzfeldt-Jakob disease (vCJD), was distributed APRIL 27, 2011

Blood product, collected from a donor who was at risk for variant Creutzfeldt-Jakob disease (vCJD), was distributed APRIL 27, 2011

PRODUCT Recovered Plasma. Recall # B-0017-11 CODE Unit: W086510003037 RECALLING FIRM/MANUFACTURER Central Blood Bank, Pittsburgh, PA, by electronic mail on January 9, 2011. Firm initiated recall is complete. REASON Blood product, collected from a donor who was at risk for variant Creutzfeldt-Jakob Disease (vCJD), was distributed. VOLUME OF PRODUCT IN COMMERCE 1 unit DISTRIBUTION IN

___________________________________

PRODUCT Source Plasma. Recall # B-0781-11 CODE Unit:07LWIG5594 RECALLING FIRM/MANUFACTURER Recalling Firm: BioLife Plasma Services LP, Deerfield, IL, by fax on January 17, 2008. Manufacturer: BioLife Plasma Services, L.P., Onalaska, WI. Firm initiated recall is complete. REASON Blood product, collected from a donor who did not respond to questions regarding increased risk for vCJD, was distributed. VOLUME OF PRODUCT IN COMMERCE 1 unit DISTRIBUTION Austria

___________________________________

PRODUCT Source Plasma. Recall # B-1212-11 CODE Unit:08LWIB5812 RECALLING FIRM/MANUFACTURER Recalling Firm: BioLife Plasma Services LP, Deerfield, IL, by fax, on June 3, 2008. Manufacturer: BioLife Plasma Services, L.P., Onalaska, WI. Firm initiated recall is complete. REASON Blood product, collected from a donor who did not respond to questions regarding increased risk for vCJD, was distributed. VOLUME OF PRODUCT IN COMMERCE 1 unit DISTRIBUTION Austria

___________________________________

PRODUCT Recovered Plasma. Recall # B-1229-11 CODE Unit: W036510029868 RECALLING FIRM/MANUFACTURER LifeShare Blood Centers, Monroe, LA, by electronic notification on March 8, 2011. Firm initiated recall is complete. REASON Blood product, collected from a donor who was at risk for variant Creutzfeldt-Jakob disease (vCJD), was distributed. VOLUME OF PRODUCT IN COMMERCE 1 unit DISTRIBUTION Switzerland

___________________________________

END OF ENFORCEMENT REPORT FOR APRIL 27, 2011

#

http://www.fda.gov/Safety/Recalls/EnforcementReports/ucm252912.htm



Friday, September 24, 2010

USA Blood products, collected from a donor who was at risk for vCJD, were distributed SEPTEMBER 2010

http://vcjdtransfusion.blogspot.com/2010/09/usa-blood-products-collected-from-donor.html



Thursday, August 12, 2010

USA Blood products, collected from a donor who was at risk for vCJD, were distributed July-August 2010

http://creutzfeldt-jakob-disease.blogspot.com/2010/08/usa-blood-products-collected-from-donor.html




Thursday, May 27, 2010


Guidance for Industry: Revised Preventive Measures to Reduce Possible Risk of Transmission of CJD and vCJD by blood and blood products; Availability

[Federal Register: May 27, 2010 (Volume 75, Number 102)] [Notices] [Page 29768-29769] From the Federal Register Online via GPO Access [wais.access.gpo.gov] [DOCID:fr27my10-66]


http://vcjdtransfusion.blogspot.com/2010/05/guidance-for-industry-revised.html




Monday, February 7, 2011

FDA's Currently-Recommended Policies to Reduce the Possible Risk of Transmission of CJD and vCJD by Blood and Blood Products 2011 ???

http://tseac.blogspot.com/2011/02/fdas-currently-recommended-policies-to.html


Sunday, January 30, 2011

Vaccines and Transmissible Spongiform Encephalopathy the Prion Disease, what if ?

COMMERCIAL IN CONFIDENCE

http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/vaccines-and-transmissible-spongiform.html



Saturday, February 26, 2011

Supreme Court Protects Vaccine Manufacturers, Not Injured Children there from Bruesewitz vs Wyeth


http://vcjdtransfusion.blogspot.com/2011/02/supreme-court-protects-vaccine.html



Wednesday, January 19, 2011

EFSA and ECDC review scientific evidence on possible links between TSEs in animals and humans Webnachricht 19 Januar 2011

http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/efsa-and-ecdc-review-scientific.html




Tuesday, January 18, 2011

Agent strain variation in human prion disease: insights from a molecular and pathological review of the National Institutes of Health series of experimentally transmitted disease

http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/agent-strain-variation-in-human-prion.html


Tuesday, December 14, 2010

Infection control of CJD, vCJD and other human prion diseases in healthcare and community settings part 4, Annex A1, Annex J, UPDATE DECEMBER 2010

http://creutzfeldt-jakob-disease.blogspot.com/2010/12/infection-control-of-cjd-vcjd-and-other.html




Wednesday, September 08, 2010

Emerging Infectious Diseases: CJD, BSE, SCRAPIE, CWD, PRION, TSE Evaluation to Implementation for Transfusion and Transplantation September 2010

http://vcjdtransfusion.blogspot.com/2010/09/emerging-infectious-diseases-cjd-bse.html



Saturday, January 20, 2007

Fourth case of transfusion-associated vCJD infection in the United Kingdom

http://vcjdtransfusion.blogspot.com/2007_01_01_archive.html


http://vcjdtransfusion.blogspot.com/2010/07/cjd-uk-parliament-12-july-2010-column.html


http://vcjdtransfusion.blogspot.com/


The EMBO Journal (2002) 21, 6358 - 6366 doi:10.1093/emboj/cdf653

BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein

Emmanuel A. Asante1, Jacqueline M. Linehan1, Melanie Desbruslais1, Susan Joiner1, Ian Gowland1, Andrew L. Wood1, Julie Welch1, Andrew F. Hill1, Sarah E. Lloyd1, Jonathan D.F. Wadsworth1 and John Collinge1

1.MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK Correspondence to:

John Collinge, E-mail: j.collinge@prion.ucl.ac.uk

Received 1 August 2002; Accepted 17 October 2002; Revised 24 September 2002

--------------------------------------------------------------------------------

Abstract

Variant Creutzfeldt–Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD-like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrPSc type 2. These data suggest that more than one BSE-derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.

Keywords:BSE, Creutzfeldt–Jakob disease, prion, transgenic

http://www.nature.com/emboj/journal/v21/n23/abs/7594869a.html



Wednesday, March 31, 2010

Atypical BSE in Cattle

To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.

This study will contribute to a correct definition of specified risk material (SRM) in atypical BSE. The incumbent of this position will develop new and transfer existing, ultra-sensitive methods for the detection of atypical BSE in tissue of experimentally infected cattle.

http://www.prionetcanada.ca/detail.aspx?menu=5&dt=293380&app=93&cat1=387&tp=20&lk=no&cat2



U.S.A. HIDING MAD COW DISEASE VICTIMS AS SPORADIC CJD ? see video at bottom

http://creutzfeldt-jakob-disease.blogspot.com/2009/07/usa-hiding-mad-cow-disease-victims-as.html



Thursday, August 12, 2010

Seven main threats for the future linked to prions

First threat

The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed. ***Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.

Second threat

snip...

http://www.neuroprion.org/en/np-neuroprion.html


Archive Number 20101206.4364 Published Date 06-DEC-2010 Subject PRO/AH/EDR> Prion disease update 2010 (11)

PRION DISEASE UPDATE 2010 (11)

http://www.promedmail.org/pls/apex/f?p=2400:1001:5492868805159684::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,86129



14th ICID International Scientific Exchange Brochure -

Final Abstract Number: ISE.114

Session: International Scientific Exchange

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

T. Singeltary

Bacliff, TX, USA

Background:

An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.

Methods:

12 years independent research of available data

Results:

I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.

Conclusion:

I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

http://ww2.isid.org/Downloads/14th_ICID_ISE_Abstracts.pdf



International Society for Infectious Diseases Web: http://www.isid.org/


Monday, May 11, 2009

Rare BSE mutation raises concerns over risks to public health

http://bse-atypical.blogspot.com/2009/05/rare-bse-mutation-raises-concerns-over.html



The most recent assessments (and reassessments) were published in June 2005 (Table I; 18), and included the categorisation of Canada, the USA, and Mexico as GBR III. Although only Canada and the USA have reported cases, the historically open system of trade in North America suggests that it is likely that BSE is present also in Mexico.

http://www.oie.int/boutique/extrait/06heim937950.pdf


Archive Number 20101206.4364 Published Date 06-DEC-2010 Subject PRO/AH/EDR> Prion disease update 2010 (11)

PRION DISEASE UPDATE 2010 (11)

SEE;

TAFS1 Position Paper on Position Paper on Relaxation of the Feed Ban in the EU Berne, 2010 TAFS

INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND FOOD SAFETY a non-profit Swiss Foundation

http://www.promedmail.org/pls/apex/f?p=2400:1001:5492868805159684::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,86129



10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007

Date: March 21, 2007 at 2:27 pm PST

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II

___________________________________

PRODUCT

Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007

CODE

Cattle feed delivered between 01/12/2007 and 01/26/2007

RECALLING FIRM/MANUFACTURER

Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.

Firm initiated recall is ongoing.

REASON

Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

42,090 lbs.

DISTRIBUTION

WI

___________________________________

PRODUCT

Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007

CODE

The firm does not utilize a code - only shipping documentation with commodity and weights identified.

RECALLING FIRM/MANUFACTURER

Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.

REASON

Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

9,997,976 lbs.

DISTRIBUTION

ID and NV

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007

http://www.fda.gov/Safety/Recalls/EnforcementReports/2007/ucm120446.htm


Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. *It also suggests a similar cause or source for atypical BSE in these countries.

http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf



Saturday, November 6, 2010

TAFS1 Position Paper on Position Paper on Relaxation of the Feed Ban in the EU Berne, 2010 TAFS

INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND FOOD SAFETY a non-profit Swiss Foundation

http://madcowfeed.blogspot.com/2010/11/tafs1-position-paper-on-position-paper.html




Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

(see mad cow feed in COMMERCE IN ALABAMA...TSS)

http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html




Tuesday, September 14, 2010

Transmissible Spongiform Encephalopathies Advisory Committee; Notice of Meeting October 28 and 29, 2010 (COMMENT SUBMISSION)

http://tseac.blogspot.com/2010/09/transmissible-spongiform_14.html


Wednesday, March 9, 2011

27 U.S. Senators want to force feed Japan Highly Potential North America Mad Cow Beef TSE PRION CJD March 8, 2011

President Barack Obama The White House

1600 Pennsylvania Avenue, W Washington, DC 20500

Dear President Obama:

http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/27-us-senators-want-to-force-feed-japan.html


Sunday, April 17, 2011

Transmission of Prion Strains in a Transgenic Mouse Model Overexpressing Human A53T Mutated [alpha]-Synuclein

Journal of Neuropathology & Experimental Neurology:

POST AUTHOR CORRECTIONS, 8 April 2011 doi: 10.1097/NEN.0b013e318217d95f

http://bse-atypical.blogspot.com/2011/04/transmission-of-prion-strains-in.html


Sunday, August 10, 2008

A New Prionopathy OR more of the same old BSe and sporadic CJD

http://creutzfeldt-jakob-disease.blogspot.com/2008/08/new-prionopathy-or-more-of-same-old-bse.html



Sunday, September 6, 2009

MAD COW USA 1997 SECRET VIDEO

http://madcowusda.blogspot.com/2009/09/mad-cow-usa-1997-video.html



Friday, March 4, 2011

Alberta dairy cow found with mad cow disease

http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/alberta-dairy-cow-found-with-mad-cow.html


Wednesday, August 11, 2010

REPORT ON THE INVESTIGATION OF THE SIXTEENTH CASE OF BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN CANADA

http://bse-atypical.blogspot.com/2010/08/report-on-investigation-of-sixteenth.html


Thursday, August 19, 2010

REPORT ON THE INVESTIGATION OF THE SEVENTEENTH CASE OF BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN CANADA

http://bseusa.blogspot.com/2010/08/report-on-investigation-of-seventeenth.html


Thursday, February 10, 2011

TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY REPORT UPDATE CANADA FEBRUARY 2011 a nd how to hide mad cow disease in Canada Current as of: 2011-01-31

http://madcowtesting.blogspot.com/2011/02/transmissible-spongiform-encephalopathy.html


i wonder if CFIA Canada uses the same OBEX ONLY diagnostic criteria as the USDA ?


Tuesday, November 02, 2010

BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992

http://bse-atypical.blogspot.com/2010/11/bse-atypical-lesion-distribution-rbse.html


Monday, April 25, 2011

Experimental Oral Transmission of Atypical Scrapie to Sheep

Volume 17, Number 5-May 2011

http://nor-98.blogspot.com/2011/04/experimental-oral-transmission-of.html


PUTTING THE CART BEFORE THE HORSE, in terms of human health risk $$$


Monday, November 30, 2009

USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH CODE

http://nor-98.blogspot.com/2009/11/usda-and-oie-collaborate-to-exclude.html


Saturday, December 18, 2010

OIE Global Conference on Wildlife Animal Health and Biodiversity - Preparing for the Future (TSE AND PRIONS) Paris (France), 23-25 February 2011

snip...

Greetings,



"Thank for your support to the OIE objectives for a safe world."


NOT !

I see again that the OIE has done little to help eradicate all animal TSE from the globe, and in fact in my opinion, have help enhance the spread of BSE and other animal TSE globally by their industry friendly regulations. I tried to warn the OIE in 2002 about CWD and the potential, but very real threat of CWD to humans. I was told that they were seriously considering this. what happened ? NOW, the OIE and the USDA collaborate to make legal the trading of all strains of atypical BSE legal, and in fact have done so with the atypical scrapie, when science has made perfectly clear the risk factors to humans and other species. I have said it once (see below), and i will say again ;

"THE OIE has now shown they are nothing more than a National Trading Brokerage for all strains of animal TSE. AS i said before, OIE should hang up there jock strap now, since it appears they will buckle every time a country makes some political hay about trade protocol, commodities and futures. IF they are not going to be science based, they should do everyone a favor and dissolve there organization."

NOW, some history on the failed OIE BSE/TSE policy, and why the OIE allowed BSE and other TSE to spread around the globe $$$

snip...

http://transmissiblespongiformencephalopathy.blogspot.com/2010/12/oie-global-conference-on-wildlife.html



Sunday, March 27, 2011

SCRAPIE USA UPDATE FEBRUARY 2011

http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/scrapie-usa-update-february-2011.html


Sunday, April 18, 2010

SCRAPIE AND ATYPICAL SCRAPIE TRANSMISSION STUDIES A REVIEW 2010

http://scrapie-usa.blogspot.com/2010/04/scrapie-and-atypical-scrapie.html


Wednesday, February 16, 2011

IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE

http://scrapie-usa.blogspot.com/2011/02/in-confidence-scrapie-transmission-to.html


Thursday, April 28, 2011

Chronic Wasting Disease Testing and Prevalence Wisconsin April 2011

http://chronic-wasting-disease.blogspot.com/2011/04/chronic-wasting-disease-testing-and.html


Wednesday, January 5, 2011

ENLARGING SPECTRUM OF PRION-LIKE DISEASES Prusiner Colby et al 2011

Prions

David W. Colby1,* and Stanley B. Prusiner1,2

http://betaamyloidcjd.blogspot.com/2011/01/enlarging-spectrum-of-prion-like.html


Saturday, January 2, 2010

Human Prion Diseases in the United States January 1, 2010 ***FINAL***

http://prionunitusaupdate2008.blogspot.com/2010/01/human-prion-diseases-in-united-states.html


my comments to PLosone here ;


http://www.plosone.org/annotation/listThread.action?inReplyTo=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd&root=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd



Friday, March 25, 2011

Detection of Prion Protein in Urine-Derived Injectable Fertility Products by a Targeted Proteomic Approach

http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/detection-of-prion-protein-in-urine.html




Saturday, March 5, 2011

MAD COW ATYPICAL CJD PRION TSE CASES WITH CLASSIFICATIONS PENDING ON THE RISE IN NORTH AMERICA

http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/mad-cow-atypical-cjd-prion-tse-cases.html




Tuesday, April 26, 2011

sporadic CJD RISING Text and figures of the latest annual report of the NCJDRSU covering the period 1990-2009 (published 11th March 2011)

http://creutzfeldt-jakob-disease.blogspot.com/2011/04/sporadic-cjd-rising-text-and-figures-of.html




Tuesday, March 29, 2011

TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY EXPOSURE SPREADING VIA HOSPITALS AND SURGICAL PROCEDURES AROUND THE GLOBE

http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/transmissible-spongiform-encephalopathy.html



Thursday, July 08, 2010

GLOBAL CLUSTERS OF CREUTZFELDT JAKOB DISEASE - A REVIEW 2010

http://creutzfeldt-jakob-disease.blogspot.com/2010/07/global-clusters-of-creutzfeldt-jakob.html




Tuesday, September 28, 2010


Variant CJD: where has it gone, or has it?

Pract Neurol 2010; 10: 250–251

http://vcjdtransfusion.blogspot.com/2010/09/variant-cjd-where-has-it-gone-or-has-it.html



http://vcjdtransfusion.blogspot.com/






DID EVERYONE THAT LOST A LOVED ONE FILL OUT THEIR CJD QUESIONNAIRE FROM THE CDC AND OR THE CJD FOUNDATION ???


Friday, November 30, 2007


CJD QUESTIONNAIRE USA CWRU AND CJD FOUNDATION



http://cjdquestionnaire.blogspot.com/



NOW, tell me again how safe the blood supply is from TSE prions in North America ???


WITH an incubation period of up to 50 years ???



Prion infection begins after one minute of exposure 26 April 2011


http://www.ucl.ac.uk/ion/articles/news/110419



Rapid cell-surface prion protein conversion revealed using a novel cell system

R. Goold,1, 4 S. Rabbanian,1, 4 L. Sutton,1 R. Andre,1 P. Arora,2 J. Moonga,1 A.R. Clarke,2 G. Schiavo,3 P. Jat,1 J. Collinge1, 2 & S.J. Tabrizi1 AffiliationsContributionsCorresponding author Journal name: Nature Communications Volume: 2,Article number:281 DOI: doi:10.1038/ncomms1282 Received08 October 2010Accepted17 March 2011Published19 April 2011

Abstract

Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrPC). Here we develop a unique cell system in which epitope-tagged PrPC is expressed in a PrP knockdown (KD) neuroblastoma cell line. The tagged PrPC, when expressed in our PrP-KD cells, supports prion replication with the production of bona fide epitope-tagged infectious misfolded PrP (PrPSc). Using this epitope-tagged PrPSc, we study the earliest events in cellular prion infection and PrP misfolding. We show that prion infection of cells is extremely rapid occurring within 1 min of prion exposure, and we demonstrate that the plasma membrane is the primary site of prion conversion.


http://www.nature.com/ncomms/journal/v2/n4/abs/ncomms1282.html



http://www.nature.com/ncomms/journal/v2/n4/full/ncomms1282.html



http://www.nature.com/ncomms/journal/v2/n4/extref/ncomms1282-s1.pdf



Subject: Transmission of BSE by blood transfusion in sheep...

Date: Thu, 14 Sep 2000 18:19:06 -0700

From: "Terry S. Singeltary Sr."

Reply-To: Bovine Spongiform Encephalopathy

To: BSE-L@uni-karlsruhe.de



######### Bovine Spongiform Encephalopathy #########

Greetings List Members,

More Dredful news, but predictable...

kind regards, Terry S. Singeltary Sr., Bacliff, Texas USA

===========================================

It is possible to transmit BSE to a sheep by transfusion with whole blood taken from another sheep during the symptom-free phase of an experimental BSE infection'

It is well known that variant Creutzfeldt-Jakob disease (vCJD) is caused by the same strain of agent that causes bovine spongiform encephalopathy (BSE) in cattle. F Houston and colleagues report the preliminary findings of transfusing blood from 19 UK Cheviot sheep fed with 5 g BSE-affected cattle brain into Cheviot sheep from scrapie-free flock of New Zealand-derived animals. The investigators found BSE clinical signs and pathology in one recipient of blood taken from a BSE infected animal. Immunocytochemistry on tissues taken from the transfused sheep showed widespread PrPSC deposition throughout the brain and the periphery. This finding suggests that blood donated by symptom-free vCJD-infected human beings could transmit infection to recipients of blood transfusions. In a Commentary, Paul Brown states that these observations are consistent with previous reports in experimentally infected rodents.

==================

Research letters Volume 356, Number 9234 16 September 2000

Transmission of BSE by blood transfusion in sheep

Lancet 2000; 356: 999 - 1000 Download PDF (1 Mb)

F Houston, J D Foster, Angela Chong, N Hunter, C J Bostock

See Commentary

We have shown that it is possible to transmit bovine spongiform encephalopathy (BSE) to a sheep by transfusion with whole blood taken from another sheep during the symptom-free phase of an experimental BSE infection. BSE and variant Creutzfeldt-Jakob disease (vCJD) in human beings are caused by the same infectious agent, and the sheep-BSE experimental model has a similar pathogenesis to that of human vCJD. Although UK blood transfusions are leucodepleted--a possible protective measure against any risk from blood transmission--this report suggests that blood donated by symptom-free vCJD-infected human beings may represent a risk of spread of vCJD infection among the human population of the UK.

The demonstration that the new variant of Creutzfeldt-Jakob disease (vCJD) is caused by the same agent that causes bovine spongiform encephalopathy (BSE) in cattle1 has raised concerns that blood from human beings in the symptom-free stages of vCJD could transmit infection to recipients of blood transfusions. There is no evidence that iatrogenic CJD has ever occurred as a result of the use of blood or blood products, but vCJD has a different pathogenesis and could present different risks. CJD is one of the transmissible spongiform encephalopathies (TSEs) characterised by the deposition of an abnormal form of a host protein, PrPSc; the normal isoform (PrPC) is expressed in many body tissues. Available evidence, based on detection of infectivity in blood in rodent models, and absence of infectivity in naturally occurring TSEs, adds to the uncertainty in risk assessments of the safety of human blood. PrPSc has been reported in blood taken from preclinical TSE-infected sheep,2 but it does not follow that blood is infectious. Bioassays of human blood can only be carried out in non-human species, limiting the sensitivity of the test. One way of avoiding such a species barrier is to transfer blood by transfusion in an appropriate animal TSE model. BSE-infected sheep harbour infection in peripheral tissues3 and are thus similar to humans infected with vCJD.4 BSE infectivity in cattle does not have widespread tissue distribution.

We report preliminary data from a study involving blood taken from UK Cheviot sheep challenged orally with 5 g BSE-affected cattle brain and transfused into Cheviot sheep from a scrapie-free flock of New Zealand-derived animals (MAFF/SF flock). MAFF/SF sheep do not develop spontaneous TSE and the transfused animals are housed separately from other sheep. All sheep in the study have the PrP genotype AA136QQ171 which has the shortest incubation period of experimental BSE in sheep.5 19 transfusions from BSE-challenged sheep have been done, mostly with whole blood. Sheep have complex blood groups and only simple cross-matching can be done by mixing recipient serum and donor erythrocytes and vice versa. Therefore single transfusions only were made between sedated cross-matched animals to minimise the risk of severe reactions. Negative controls were MAFF/SF sheep transfused with blood from uninfected UK Cheviot sheep. As a positive control, MAFF/SF sheep were intravenously injected with homogenised BSE-affected cattle brain.

We have seen BSE clinical signs and pathological changes in one recipient of blood from a BSE-infected animal, and we regard this finding as sufficiently important to report now rather than after the study is completed, several years hence. The blood donation resulting in transmission of BSE to the recipient was 400 mL of whole blood taken from a healthy sheep 318 days after oral challenge with BSE. BSE subsequently developed in this donor animal 629 days after challenge, indicating that blood was taken roughly half way through the incubation period. 610 days after transfusion, the transfused sheep (D505) itself developed typical TSE signs: weight loss, moderate pruritus, trembling and licking of the lips, hind-limb ataxia, and proprioceptive abnormalities. This is the first experimental transmission of BSE from sheep to sheep and so we have nothing with which to compare this incubation period directly. In cross-species transmissions, bovine BSE injected intracerebrally gives incubation periods of about 450 days in these sheep,5 and the donor animal had an oral BSE incubation period of 629 days (see above). There are no similar data available on other infection routes. Immunocytochemistry with the antibody BG4 on tissues taken from sheep D505 showed widespread PrPSc deposition throughout the brain and periphery. Western blot analysis of brain tissue with the antibody 6H4 showed that the PrPSc protein had a glycoform pattern similar to that of experimental BSE in sheep and unlike that of UK natural scrapie (figure), indicating that the TSE signs resulted from transmission of the BSE agent. All other recipients of transfusions and positive and negative controls are alive and healthy. The positive controls, which involve a species barrier, are expected to have lengthy incubation periods. With one exception, all transfused animals are at earlier stages post-transfusion than was D505. The exception is a sheep which is healthy 635 days after transfusion with BSE-blood donated at less than 30% of the BSE incubation period of the donor sheep.

PrPSc (proteinase K treated) analysed by SDS-PAGE, immunoblotted with 6H4, and visualised with a chemiluminescent substrate

All lanes are from the same gel with different exposure times. Size markers are to the left of lane 1. Lane1: natural scrapie sheep brain, 3 min exposure. Lane 2: as lane 1, 10 min exposure. Lane 3: sheep D505, blood-transfusion recipient, 10 min exposure. Lane 4: experimental BSE-affected sheep brain, 30 s exposure. Lane 5: as lane 4, 10 min exposure. Each lane loaded with amount of protein extracted from 0·1 g wet weight of brain, except lane 3 which was extracted from 0·2 g brain.

Although this result was in only one animal, it indicates that BSE can be transmitted between individuals of the same species by whole-blood transfusion. We have no data on blood fractions or on levels of infectivity in blood of preclinical vCJD cases, but whole blood is not now used in UK transfusions. The presence of BSE infectivity in sheep blood at an early stage in the incubation period suggests that it should be possible to identify which cells are infected, to test the effectiveness of leucodepletion, and to develop a diagnostic test based on a blood sample.

We thank Karen Brown, Moira Bruce, Calum McKenzie, David Parnham, Diane Ritchie, and the Scottish Blood Transfusion Service. The project is funded by the Department of Health.

1 Bruce ME, Will RG, Ironside JW, et al. Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature 1997; 389: 488-501 [PubMed].

2 Schmerr MJ, Jenny A, Cutlip RC. Use of capillary sodium dodecyl sulfate gel electrophoresis to detect the prion protein extracted from scrapie-infected sheep. J Chromatogr B Biomed Appl 1997; 697: 223-29 [PubMed].

3 Foster JD, Bruce M, McConnell I, Chree A, Fraser H. Detection of BSE infectivity in brain and spleen of experimentally infected sheep. Vet Rec 1996; 138: 546-48 [PubMed].

4 Hill AF, Zeidler M, Ironside J, Collinge J. Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 1997; 349: 99-100.

5 Goldmann W, Hunter N, Smith G, Foster J, Hope J. PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J Gen Virol 1994; 75: 989-95 [PubMed].

Institute for Animal Health, Compton, Newbury, UK (F Houston PhD, CJ Bostock PhD); and Institute for Animal Health, Neuropathogenesis Unit, Edinburgh, EH9 3JF, UK (N Hunter PhD, JD Foster BSc, Angela Chong BSc)

Correspondence to: Dr N Hunter

=======================

Commentary Volume 356, Number 9234 16 September 2000

BSE and transmission through blood

Lancet 2000; 356: 955 - 956 Download PDF (55 Kb) Wether the outbreak of variant Creutzfeldt-Jakob disease (vCJD) in the UK will ultimately affect hundreds, or tens of thousands of people, cannot yet be predicted.1 If large numbers of apparently healthy people are now silently incubating infections with bovine spongiform encephalopathy (BSE), the implications for public health include the possiblity that blood from such individuals may be infectious. Established facts about infectivity in the blood of human beings and animals with transmissible spongiform encephalopathies (TSEs) are as follows:2-4

Blood, especially the buffy-coat component, from animals experimentally infected with scrapie or CJD and from either a clinical or preclinical incubation phase, is consistently infectious when bioassayed by intracerebral or intraperitoneal inoculation into the same species;

In naturally infected animals (sheep and goats with scrapie, mink with transmissible mink encephalopathy, and cows with BSE), all attempts to transmit disease through the inoculation of blood have failed;

Blood from four of 37 human beings with clinically evident sporadic CJD has been reported to transmit the disease after intracerebral inoculation into guineapigs, mice, or hamsters. But each success has been questioned on technical grounds and has not been reproducible; and

Epidemiological data have not revealed a single case of CJD that could be attributed to the administration of blood or blood products among patients with CJD, or among patients with haemophilia and other congenital clotting or immune deficiencies who receive repeated doses of plasma concentrates.

No comparable information about vCJD is available. However, since lymphoreticular organs, such as tonsils have been shown to contain the prion protein (which is an excellent index of infectivity), whereas it is not detectable in patients with sporadic CJD, there is some reason to worry that blood from individuals incubating vCJD might be infectious.5 Data from studies into the ability of blood from experimentally infected rodents and primates with vCJD to transmit the disease will not be available for months or years.

In this issue of The Lancet, F Houston and co-workers report convincing evidence that blood from a seemingly healthy sheep incubating BSE (infected by the oral route with brain from a diseased cow) was able to cause the disease when transfused into another sheep. This observation is entirely consistent with past experience in experimentally infected rodents. It extends current knowledge about blood infectivity in experimental models to a host/TSE strain pair that is closer to the human vCJD situation than the earlier rodent studies. It is also the first successful transfusion of BSE from blood taken during the all-important incubation period of infection. This result is part of a larger study (n=19) that includes both positive and negative control animals, all still healthy and in various early stages of the incubation period.

Is it appropriate to publish an experimental result from a single animal in a study that is not far enough along even to have validated its positive controls? Especially a result that does not in any fundamental way change our current thinking about BSE and vCJD and which would not seem to have any practical consequences for public health? The UK National Blood Transfusion Service has already implemented leucodepletion of donated blood, and imports all plasma and plasma derivatives from BSE-free countries. No further measures would seem possible--short of a draconian decision to shut down the whole UK blood-donor system. What, therefore, is the rationale for this publishing urgency? The answer, evidently, is a perceived need to "defuse", by an immediate and accurate scientific report, public reaction to possibly inaccurate media accounts. The full study, when it appears, will be an important addition to our knowledge of TSEs, but science should not be driven to what in certain medical quarters might be termed a premature emission through fear of media misrepresentation.

Paul Brown

Laboratory of Central Nervous System Studies, National Institutes of Health, Bethesda, MD 20892, USA

1 Ghani AC, Ferguson NM, Donnelly CA, Anderson RM. Predicted vCJD mortality in Great Britain. Nature 2000; 406: 583-84 [PubMed].

2 Brown P. Can Creutzfeldt-Jakob disease be transmitted by transfusion? Curr Opin Hematol 1995; 2: 472-77 [PubMed].

3 Brown P, Cervenáková L, McShane LM, Barber P, Rubenstein R, Drohan WN. Further studies of blood infectivity in an experimental model of transmissible spongiform encephalopathy, with an explanation of why blood components do not transmit Creutzfeldt-Jakob disease in humans. Transfusion 1999; 39: 1169-78 [PubMed].

4 Rohwer RG. Titer, distribution, and transmissibility of blood-borne TSE infectivity. Presented at Cambridge Healthtech Institute 6th Annual Meeting "Blood Product Safety: TSE, Perception versus Reality", MacLean, VA, USA, Feb 13-15, 2000.

5 Hill AF, Butterworth RJ, Joiner S, et al. Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 1999; 353: 183-89.

http://www.thelancet.com/



===================


Journal of General Virology (2002), 83, 2897–2905. Printed in Great Britain Published ahead of print (16 July 2000) in JGV Direct as DOI 10.1099/vir.0.18580-0 Transmission of prion diseases by blood transfusion Nora Hunter,1 James Foster,1 Angela Chong,1 Sandra McCutcheon,2 David Parnham,1 Samantha Eaton,1 Calum MacKenzie1 and Fiona Houston2



Abstract


Attempts to detect infectivity in the blood of humans and animals affected with transmissible spongiform encephalopathies (TSEs or prion diseases) have often been inconclusive because of the limitations of cross-species bioassays and the small volumes of blood that can be injected by the intracerebral route. A model has been developed for the experimental study of TSE transmission by blood transfusion using sheep experimentally infected with bovine spongiform encephalopathy (BSE) or natural scrapie as donors and susceptible scrapie-free sheep as recipients. Donors and recipients of the same species greatly increase the sensitivity of the bioassay and in sheep large volumes of blood can be injected by the intravenous (i.v.) route. Transmission of BSE to a single animal using this approach was reported recently. This study confirms this result with a second transmission of BSE and four new cases of transmission of natural scrapie. Positive transmissions occurred with blood taken 2 at pre-clinical and clinical stages of infection. Initial studies indicate that following such infection by the i.v. route, deposition of the abnormal prion protein isoform, PrPSc, in peripheral tissues may be much more limited than is seen following oral infection. These results confirm the risks of TSE infection via blood products and suggest that the measures taken to restrict the use of blood in the UK have been fully justified.



http://www.socgenmicrobiol.org.uk/JGVDirect/18580/18580ft.pdf





TSS

Labels: